Solution:
Assumptions:
1.      Heat
Transfer through the body is given to be steady and two-dimensional. 
2.      There
is no heat generation in the body. 
Properties:
Thermal
conductivity of the body is given to be k = 45 W/m · °C
Analysis:
            The mesh size is given to be 
x
= 
y
= 2.0 cm means square grid.
The general finite difference form of an interior node of square grid
for steady two-dimensional heat conduction for the case of no heat generation
is expressed as: 
            Tm+1, n + Tm-1, n
+ Tm, n+1 + Tm, n-1 – 4 Tm, n = 0 
The
equation for node 1: 
            180 + T2 + 180 + T4
– 4 T1 = 0
ð  4
T1 – T2 – T4 = 360 
The
equation for node 2: 
            T1 + T3 + 200
+ T5 – 4 T2 = 0 
ð   T1
– 4 T2 + T3 + T5 = 
 200
The
equation for node 3: 
            T2 + 180 + 180 + T6
– 4 T3 = 0 
ð   T2
– 4 T3 + T6 = 
360   
The
equation for node 4: 
            200 + T5 + T1
+ T7 – 4 T4 = 0 
ð   T1
– 4 T4 + T5 + T7 = 
 200 
The
equation for node 5: 
            T4 + T6 + T2
+ T8 – 4 T5 = 0 
ð  T2
+ T4 – 4 T5 + T6 + T8 = 0 
The
equation for node 6: 
            T5 + 200 + T3
+ T9 – 4 T6 = 0
ð   T3
+ T5 – 4 T6 + T9 = 
 200 
The
equation for node 7: 
            180 + T8 + T4
+ 180 – 4 T7 = 0
ð   T4
– 4 T7 + T8 = 
 360 
The
equation for node 8: 
            T7 + T9 + T5
+ 200 – 4 T8 = 0
ð   T5
+ T7 – 4 T8 + T9 = 
 200 
The
equation for node 9: 
            T8 + 180 + T6
+ 180 – 4 T9 = 0 
ð   T6
+ T8 – 4 T9 = 
 360 
Thus,
we get nine equations and nine unknown nodal temperatures. 
The
above equations can be written in the matrix form like below: 
Now,
solve this matrix by Matrix Inversion Method using MATLAB:
Code:
clc 
clear all 
close all 
A = [4 -1 0 -1 0 0 0 0 0;
    1 -4 1 0 1 0 0 0 0;
    0 1 -4 0 0 1 0 0 0;
    1 0 0 -4 1 0 1 0 0;
    0 1 0 1 -4 1 0 1 0;
    0 0 1 0 1 -4 0 0 1;
    0 0 0 1 0 0 -4 1 0;
    0 0 0 0 1 0 1 -4 1; 
    0 0 0 0 0 1 0 1 -4] 
D = [360; 
    -200;
    -360;
    -200;
    0;
    -200;
    -360;
    -200;
    -360]
T = inv(A) * D;
T1 = T(1) 
T2 = T(2)
T3 = T(3)
T4 = T(4) 
T5 = T(5) 
T6 = T(6)
T7 = T(7) 
T8 = T(8)
T9 = T(9)
Output:
A =
     4   
-1     0    -1    
0     0     0    
0     0
     1   
-4     1     0    
1     0     0    
0     0
     0    
1    -4     0    
0     1     0    
0     0
     1    
0     0    -4    
1     0     1    
0     0
     0    
1     0     1   
-4     1     0    
1     0
     0    
0     1     0    
1    -4     0    
0     1
     0    
0     0     1    
0     0    -4    
1     0
     0    
0     0     0    
1     0     1   
-4     1
     0    
0     0     0    
0     1     0    
1    -4
D =
   360
  -200
  -360
  -200
     0
  -200
  -360
  -200
  -360
T1 = 185
T2 = 190
T3 = 185
T4 = 190
T5 = 190
T6 = 190
T7 = 185
T8 = 190
T9 = 185
So,
the temperatures we obtain at the indicated nodes: 
     T1 = T3 = T7
= T9 = 185 
C
            T2 = T4 = T5
= T6 = T8 = 190 
C

